The Anaphase-Promoting Complex Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans
نویسندگان
چکیده
The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that targets key cell cycle regulatory proteins for degradation. Blockade of APC activity causes mitotic arrest. Recent evidence suggests that the APC may have roles outside the cell cycle. Several studies indicate that ubiquitin plays an important role in regulating synaptic strength. We previously showed that ubiquitin is directly conjugated to GLR-1, a C. elegans non-NMDA (N-methyl-D-aspartate) class glutamate receptor (GluR), resulting in its removal from synapses. By contrast, endocytosis of rodent AMPA GluRs is apparently regulated by ubiquitination of associated scaffolding proteins. Relatively little is known about the E3 ligases that mediate these effects. We examined the effects of perturbing APC function on postmitotic neurons in the nematode C. elegans. Temperature-sensitive mutations in APC subunits increased the abundance of GLR-1 in the ventral nerve cord. Mutations that block clathrin-mediated endocytosis blocked the effects of the APC mutations, suggesting that the APC regulates some aspect of GLR-1 recycling. Overexpression of ubiquitin decreased the density of GLR-1-containing synapses, and APC mutations blunted this effect. APC mutants had locomotion defects consistent with increased synaptic strength. This study defines a novel function for the APC in postmitotic neurons.
منابع مشابه
LIN-23-Mediated Degradation of β-Catenin Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans
Ubiquitin-mediated protein degradation has been proposed to play an important role in regulating synaptic transmission. Here we show that LIN-23, the substrate binding subunit of a Skp1/Cullin/F Box (SCF) ubiquitin ligase, regulates the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of C. elegans. Mutants lacking lin-23 had an increased abundance of GLR-1 in the ventral cor...
متن کاملCDK-5 regulates the abundance of GLR-1 glutamate receptors in the ventral cord of Caenorhabditis elegans.
The proline-directed kinase Cdk5 plays a role in several aspects of neuronal development. Here, we show that CDK-5 activity regulates the abundance of the glutamate receptor GLR-1 in the ventral cord of Caenorhabditis elegans and that it produces corresponding changes in GLR-1-dependent behaviors. Loss of CDK-5 activity results in decreased abundance of GLR-1 in the ventral cord, accompanied by...
متن کاملThe AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans
Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found...
متن کاملThe deubiquitinating enzyme USP-46 negatively regulates the degradation of glutamate receptors to control their abundance in the ventral nerve cord of Caenorhabditis elegans.
Ubiquitin-mediated endocytosis and post-endocytic trafficking of glutamate receptors control their synaptic abundance and are implicated in modulating synaptic strength. Ubiquitination is a reversible modification, but the identities and specific functions of deubiquitinating enzymes in the nervous system are lacking. Here, we show that the deubiquitinating enzyme ubiquitin-specific protease-46...
متن کاملThe kinesin-3 family motor KLP-4 regulates anterograde trafficking of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans
The transport of glutamate receptors from the cell body to synapses is essential during neuronal development and may contribute to the regulation of synaptic strength in the mature nervous system. We previously showed that cyclin-dependent kinase-5 (CDK-5) positively regulates the abundance of GLR-1 glutamate receptors at synapses in the ventral nerve cord (VNC) of Caenorhabditis elegans. Here ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004